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Abstract

Matrix elements and spherical functions of irreducible representations of the
de Sitter group are studied on the various homogeneous spaces of this group. It
is shown that a universal covering of the de Sitter group gives rise to quaternion
Euler angles. An explicit form of Casimir and Laplace—Beltrami operators on
the homogeneous spaces is given. Different expressions of the matrix elements
and spherical functions are given in terms of multiple hypergeometric functions
both for finite-dimensional and unitary representations of the principal series
of the de Sitter group. Applications of the functions obtained to the hydrogen
atom problem are considered.

PACS numbers: 02.20.Qs, 02.30.Gp

1. Introduction

The representation theory of the de Sitter group, and also all the questions concerning this
group and the de Sitter spacetime, is at the forefront due to the recent discoveries in modern
cosmology. One of the most important problems in this area is a construction of quantum field
theory in the de Sitter spacetime (see, for example, [2, 7, 19, 29]). As is known, in the standard
quantum field theory in Minkowski spacetime solutions (wavefunctions) of relativistic wave
equations are expressed via an expansion in relativistic spherical functions (matrix elements of
the Lorentz group representations) [1, 24, 28, 30]. The analogous problem in five dimensions
(solutions of wave equations in de Sitter space) requires the most exact definition for the matrix
elements and spherical functions of irreducible representations of the de Sitter group.

In the present work, spherical functions are studied on the various homogeneous spaces of
the de Sitter group SO (1, 4). A starting point of this research is an analogue between universal
coverings of the Lorentz and de Sitter groups, which was first established by Takahashi
[23] (see also the work of Strom [22]). Namely, the universal covering of SO¢(1,4) is
Spin, (1,4) >~ Sp(1,1) and the spinor group Spin, (1, 4) is described in terms of 2 x 2
quaternionic matrices. On the other hand, the universal covering of the Lorentz group
S0y(1,3) is Spin,(1,3) >~ SL(2,C), where the spinor group Spin_ (1, 3) is described in
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terms of 2 x 2 complex matrices. This analogue allows us to apply (with some restrictions)
Gel’fand—Naimark representation theory of the Lorentz group [15, 20] to SO (1, 4). Section 2
contains a further development of the Takahashi—Strom analogue (quaternionic description of
SOy(1,4)). It is shown that for the group Spin,(1,4) >~ Sp(1, 1) there are quaternion
Euler angles which contain complex Euler angles of Spin_ (1, 3) >~ SL(2, C) as a particular
case. Differential operators (Laplace—Beltrami and Casimir operators) are defined on Sp(1, 1)
in terms of the quaternion Euler angles. Spherical functions on the group SOy(1,4) are
understood as functions of representations of the class 1 realized on the homogeneous spaces
of SO((1,4). A list of homogeneous spaces of SO (1, 4), including symmetric Riemannian
and non-Riemannian spaces, is given at the end of section 2. Spherical functions on the group
SO (4) (maximal compact subgroup of SOy(1,4)) are studied in section 3. It is shown that
for a universal covering Spin(4) >~ SU (2) ® SU(2) of SO (4) there are double Euler angles.
It should be noted that all the hypercomplex extensions (complex, double, quaternion) of
usual Euler angles of the group SU (2) follow directly from the algebraic structure underlying
the groups Spin, (p, ¢) and describing within the framework of Clifford algebras C¢, , [27].
Matrix elements and spherical functions of SO(4) are expressed via the product of two
hypergeometric functions. Further, spherical functions of finite-dimensional representations of
SOy(1, 4) are studied in section 4 on the various homogeneous spaces of SO (1, 4). Itis shown
that matrix elements of SO¢(1,4) admit factorizations with respect to the matrix elements
of subgroups SO (4) and SOy(1, 3), since double and complex angles are particular cases
of the quaternion angles. In turn, matrix elements and spherical functions of SO(1, 4) are
expressed via multiple hypergeometric series (the product of three hypergeometric functions).
At the end of section 4 we consider applications of the spherical functions, defined on the four-
dimensional hyperboloid, to hydrogen and antihydrogen atom problems. Spherical functions
of the principal series representations of SO¢(1, 4) are considered in section 5 within the
Dixmier—Strom representation basis of the de Sitter group SO((1, 4) [9, 22].

2. The de Sitter group SO((1,4)

The homogeneous de Sitter group SO (1, 4) consists of all real matrices of fifth order with
the unit determinant which leave invariant the quadratic form

0(x) :xé —xlz —x% —x% —xf.
The Lie algebra so(1, 4) of SO((1, 4) consists of all real matrices

0 an an a3z  am

apr 0 —ap —ap —auy

apy a0 —axz —an|. (1)
apy a3z an 0 —ax

Aoy Q14 Gy A3 0

Thus, the algebra so(1, 4) has basis elements of the form
L,y = —ey + ey, S7r=15273745 s <, (2)
LOV = eOr + er07 r= ls 27 31 4» (3)
where e, is a matrix with elements (e,s) g = 8,5054. The basis elements (2) and (3) satisfy
the following commutation relations:
[L;/.v, Lpa] = gvpL;w + g,uava - gp.pLua - gvaLup: @
P, ,v,0=0,1,2,3,4,
where gro = ok = Sok» 8ks = —Okss k. s = 1,2,3,4. §O¢(1, 4) is a ten-parametric group.



Spherical functions on the de Sitter group 165

The maximal compact subgroup K of SO¢(1,4) is isomorphic to the group SO(4) and
consists of the matrices

1 0
0 S04)"

Further, Cartan decomposition of the algebra so(1, 4) and Iwasawa decomposition of the group
S0Oy(1,4) have a great importance at the construction of representations of the de Sitter group
SO(1,4). So, in the Cartan decomposition so(1, 4) = so(4) + p a subspace p consists of the
basis elements (3). The group SO¢(1, 4) has a real rank 1. For that reason, the commutative
subalgebra a of s0(1, 4) is one dimensional. We can take the matrix L4 as a basis element of
a. Therefore, the commutative subgroup A consists of the matrices

coshae 0 0 O sinho
0 1 00 0
0 010 0 , 0<a< oo (5)
0 0 0 1 0
sinhe 0 0 O cosha
Using relations (4), we verify that a nilpotent subalgebra n of so(1, 4) is defined by the matrices

Loy + Log, Los + L34 and Loy + L14. Making an exponential mapping of the subalgebra n into
the subgroup N, we find that the nilpotent subgroup N consists of the matrices

1+(r2+s2+t2)/2 tr s —@r+s2+1Y)
t 1 0 0 —t
r 01 0 —r . (6)
s 0 0 1 —s
(r2+s2+t2)/2 tr s 1—=@2+s2+1%)

The subgroups K, A and N define the Iwasawa decomposition SO((1,4) = SO4) - NA.
In accordance with the definition of the subgroup M of SO(1,4) (see, for example, [18]),
the subgroup M is isomorphic to SO(3). Thus, a minimal parabolic subgroup P has a
decomposition P = SO (3) - NA. Since the rank of SO (1, 4) is equal to 1, then there exist
no other parabolic subgroups containing P.

In the group SO¢(1, 4) there are two independent Casimir operators

2 2 2 2 2 2 2 2 2 2
F=Ly,+ L+ Ly, + L+ L+ L3 — Lo — Ly, — Lig — Ly, (N

W = (LiaLog — L13Loa + L1sL23)* — (L1aL3g — LosLog + LosLo3)*
—(Lo1L3g — LosLyg + LoaL13)* — (Lot Lag — LoaLya + LosL12)?
—(LoiLas — LoaLy3 + LosL12)*. ®)

It is known that Casimir operator W is equal to zero on the representations 7 of the class 1
[6]. The Casimir operator F takes the values o (o + 3) on the representations 7°.

With the aim to obtain self-conjugated operators we will consider generators J,, = iL,,
instead the elements L, of the algebraso(1, 4). In unitary representations we have J;;, = Jy,.
Let us introduce the following designations for the ten generators J,,, of SO((1, 4):

M =M, = Jp, My = J31, M3 = Jpp),

P = (P = Jis, P, = Jog, P3 = J34), ©)
N = (N = Jo1, No = Joo, N3 = Jo3),

Py = Jus.
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Casimir operators of the group SO¢(1, 4) in this designation have the form
F = (Py+N?) — (P*+ M?),
W=(M-P)?—(PPM—P x N)>—(M-N)>.

The generators (9) satisfy the following commutation relations:

[My, Mi] = iegim My, [Nk, Nil = —iegim My,

[P, P] = i€gim M,

[My, Ni1 = i€xim N, [(My, Pi] = iekim P, (10)
[My, Nil = [My, Pr] = [My, Po]l =0,

[Po, N¢l = iP, [Po, Pr] = iNg, [Py, Ni1 = id1 Po,

where gy, 1s an antisymmetric tensor of third rank, which takes the values 0 or =41
(k,l,m =1,2,3).

2.1. Quaternionic description of SO(1, 4)

Universal covering of the de Sitter group SO (1, 4) is a spinor group Spin, (1,4) >~ Sp(1, 1)
[16, 27]. In its turn, Spin, (1, 4) € C{7,, where CKJIr 4 1s an even subalgebra of the Clifford
algebra C¢; 4 associated with the de Sitter space R'**. Further, there is an isomorphism
Ct7 4 = Cly 3, where (X 3 is a spacetime algebra associated with the Minkowski space R!3,

In virtue of the Karoubi theorem [17], the spacetime algebra C?; 3 admits the following
decomposition':

Cliz = Cl ® Cls.

The decomposition Cl; 3 ~ Cl;; ® Cly, means that for the algebra C¢; 3 there exists a
transition from the real coordinates to quaternion coordinates of the form a +b¢; +c{ +d¢ 1 &,
where {1 = ej23, {2 = ejp4. Atthis point, (¥ = ¢ = ((10)? = —1, e =1,e] =€} = €] =
—1. Tt is easy to see that the units ¢; and ¢, form a basis of the quaternion algebra, since
&1 ~ 1,8 ~j, ¢&1& ~ k. Therefore, a general element

4 4 4 4 4 4
Aa,, = ey + E a'e; + E E a’e;e; + E E E a”ke;ejek +a'?%e e.e5e4
i=1

i=1 j=I i=1 j=1 k=1
of the spacetime algebra (¥ 3 can be written in the form
0 1 2 3
Ag,, = C L+ T8+ O o+ Oy 68,
where each coefficient CE"L , (i =0, 1, 2, 3) is isomorphic to the anti-quaternion algebra C¢; 2

C@?,l = ao + alel + a2e2 + (112612,
Cgh =a'? —a%e; —ae, — d’eyy,
Cg%,l = a124 — 612461 + a14e2 + 614012,
CE?,I — —a® — a'Me, — a®e, +a' P ep.
It is easy to verify that the units ¢; and ¢, commute with all the basis elements of CZ; ;.

' This decomposition is a particular case of the most general formula C¢(V@® V', Q@ Q') ~ CL(V, Q)RCL(V', =),
where V and V' are vector spaces endowed with quadratic forms Q and Q' over the field F, dim V is even [17,
proposition 3.16].

2y, is a real Clifford algebra of the type p — ¢ = 0 (mod 8) with a division ring K ~ R. This algebra is called
the anti-quaternion algebra by Rozenfel’d [21].
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Further, let us define matrix representations of the quaternion units ¢; and ¢, as follows:

0 -1 0 i
Cl'—><1 O)’ Cz'—><i O)'
Thus, in virtue of the Karoubi theorem we have
|:C€(1)1 —ice, _Cgi.1+C€%1:|
3 =~ May(y ) = L e 0 . sre3
¢y +ic, O, +idl,
or

a b
Cly 3 =~ Maty () = |:c d:|

|: a’ —a + (@ +a*i— (@ +ah)j+ (@ —adk a® —a"B + (@ +a™)i+ (@ —ahj+ (@ +ad)k :|

a+aP 4@ —a®i— (@ +a)j+ @ —aHk  a+a™+ @ — i+ (@ —aP)j+ (@ +a?hk |
where i = e, j = e,, k = ey, are anti-quaternion units, which satisfy the relations
i?=—1, j?=1, K =1,
ij=—ji=Kk, ki = —ik =, kj = —jk =i

In such a way, the universal covering of the de Sitter group SO(1, 4) is
. a b a b
Spin_ (1,4) ~ {|:c c:| € H(2) : det |:c d] = 1} = Sp(1, 1),

where det [ ] = 1 means that

ab = 2d. jal> = lc]> = 1, dI* = 1b* = 1,
or

ac=bd,  laP-1pP =1 |dP—Ic’ =1,

here a means a quaternion conjugation.
The ten-parameter group Spin,(1,4) =~ Sp(1,1) has the following one-parameter
subgroups:

SEN ) cos§ —sin¥ cos? isin g

mia(Y) = ol mile)=| | .o omu@) =1 e

0 e'2 sinf  cos £ isin cos3s
cos$ isin cos§ —jsin$ kT 0

pu@ =\, o | () =1|. ) puO0= )

Ismz  Cos 3 Jsm 3 COS = 0 e X2

2 2

coshf sinh coshs  isinh$ e: 0
no(my=|( . 2 i RGO E B 2 ,n03(8)=< _s>,
sinh 5 cosh & —isinh 5 cosh 5 e 2

)
e 0
pos(w) = (O e_;)),

where the ranges of parameters (Euler angles) are

S}
[}

[SIE
o

0<0<m, 0<o<m,
0< ¢ < 2m, 0< ¢ < 2m, (11
=2 < Y < 2m, =2 < x < 2m,
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—00 < T < 400, —00 < € < 400, (12)
—00 < & < 400, —00 < W < +00.

Let us find a general transformation q of Spin, (1, 4) in the space of representation with the
smallest weight (a so-called fundamental representation). In general, this form of the element
g € G is closely related with the Cartan decomposition G = K AK, where G is a connected
Lie group, K is a maximal compact subgroup of G and A is a maximal commutative subgroup
of G. For example, the three-parameter group SU (2) (a universal covering of SO (3)) has the
following subgroups:

c_ cos% isin% A els 0 13
isin% cos 3 ' 0 e f|’

where t = {¢, ¥}. Therefore, the Cartan decomposition SU(2) = KAK of the element
u € SU(2) is (see, for example, [32])

i 0 e -0 .
el2 0 cos; Ismny e! 0
=u(p,0, = . T I 14
§=u@ 0w < 0 e'g) (ising cos%) ( 0 e“zp) (1

2

>

wie

where ¢, 6, Y are Euler angles.

In its turn, the six-parameter group Spin,(1,3) ~ SL(2,C) (a universal covering
of the Lorentz group SOy(1,3)) is a complex extension of the group SU(2), that is,
SL2,C) = [SUQR)]* = K°A°K¢, where K and A° are complex extensions of the

groups (13):
c . . c o . .
cos % isin 97 cos % isin % cosh 5 sinh 3
KC = =
isinZ cos% isin? cos? sinh £ cosh % ’
2 2 2 2 2 2

A€ — el 0 _ el 0 et 0
“\o eir) o e ) o et/

where p = {¢, ¥}, g = {€, ¢}. Thus, the Cartan decomposition SL(2, C) = K“A°K*¢ of the
element g € Spin, (1,3) >~ SL(2,C) is

g=9(p".0°v) =g(p,€,0,7,V,¢)

el 0 es 0 cos 05 isin % cosh 5 sinh %
= Y e .. )
0 ez 0 e72 /) \isin? cos? sinhZ coshZ
2 2 2 2
cY .
0

+ ¢ c . - ¢ Y€
> 0 cosL isin%\ [eiT 0
= T 13 9e i B (15)
0 ez isin%  cos> 0 etz

©° = @ — e, 0 =0 —ir, Y= —ie

where

are complex Euler angles. Hence it follows that the element (15) is a complex extension
of (14).

Further, the six-parameter spinor group Spin(4) (a universal covering of SO (4)) due to
an isomorphism Spin(4) >~ SU(2) ® SU (2) admits the decomposition Spin(4) = K°A°K¢,
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where K¢ and A° are double extensions of the subgroups (13):

cos % isin 97 cos % isin % cos "—; isin %

K¢ = =

B isin? cos® | \isin? cos? isin 2 ¢ '
2 2 2 2 Sy COS 5
i< i2 i4
. e'z 0 e'z 0 e'z 0

AT = i | = —i2 —if ’

0 e 12 0 e 2 0 e™

where p = {¢, ¥}, ¢ = {c, x}. In this case, the Cartan decomposition Spin(4) = K°A°K*
of the element g € SU(2) ® SU(2) is

g=8w 0% v°) =g(0,5.0,0, ¢, x)

<ei;’ 0 ) (ei§ 0 > (cos% isin§> <c0s5 isin 5
= _je —is R’ 2} ) ¢
2 2 = = =z z
0 e 0 e ising cosj ising cos 3
v (X
e'2 0 e'2 0
X . .
0 e_‘% 0 ez
o€ e .« - e Yl
dT 0 cosL isin%\ [eiT 0 ;
= T I PO o g ) (16)
0 ez isin%  cos % 0 ez

where
0 =0+¢,
¢ =9+, an
V=V x

are double Euler angles. It is easy to see that the element (16) is a double extension of (14).

Finally, the ten-parameter spinor group Spin,(1,4) ~ Sp(1, 1) (a universal covering
of the de Sitter group SO(1,4)) is defined in terms of 2 x 2 quaternionic matrices. This
fact allows us to introduce a decomposition Sp(1,1) = K?7A9K?, where K7 and A9 are
quaternionic extensions of the groups (13):

q . . q o . . o .
{(cos% 1s1n%> (cos% 1s1n§> (cosh% smh%) (cos% 1sm%’>}
Kq fr— fr—
isin 07 isin @ [ inh £ z foin @ ¢ ’
isin oS 5 ising cos; sinh 5 cosh 5 isin§ cos %

2

d7 0 s 0 ez 0 ks 0
Aq = Lo - —_j¢ _€ kS )
0 ei% 0 ez 0 e 2 0 e™2
. i 0

Therefore, the Cartan decomposition Sp(1, 1) = K?7A9K? of the element g € Sp(1, 1) is

g =9 0% v =4q(p.€,6,.0.7. 0, ¥, ¢ 0, x)
4

elf 0 es 0 eks 0 cos 5 isin%
o e 0 e 0 ek isinf cos$

e
(cosh % sinh % ) (cos % isin % )
X
inh £ z isin @ [}
sinh 5 cosh 3 isin5 cos %
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5 et 0 ei 0 \[ef 0 ei% 0
0 e 0 e 0 e 2 e s
il 09
0 cos & jsin?
= " 2 : (18)
0 e'7 isinZ cos? 0

09 =0 + ¢ —it,
@1 =@ —ie+jg, (19)
Y1 =Y —ie —iw +ky

where

are quaternion Euler angles’. Hence it immediately follows that the element (18) is a
quaternionic extension of (14).

2.2. Differential operators on the group Sp(1, 1)

Let Q2(¢) be the one-parameter subgroup of Sp(1,1) and let w(z) be a matrix from the
group 2(¢). The operators of the right regular representation of Sp(1, 1), corresponding to
the elements of the subgroup €2(¢), transfer quaternion functions f(q) into R(w(?)) f(q) =
f(gw(t)). For that reason, the infinitesimal operator of the right regular representation R(q),
associated with one-parameter subgroup €2(¢), transfers the function f(q) into W at
t=0.

Let us denote quaternion Euler angles of the element qw (¢) via ¢?(t), 09(t), ¥9(¢). Then
there is an equality

df@o@)| _ af

ar w(qu(o)), + f
=0

af

07(0 70
S(7(0) + w(lﬁ())

The infinitesimal operator J,,, corresponding to the subgroup 2 (t) has a form

Jo = (97 (0)) aot (9"(0)) S+ W0 lﬂ
Let us calculate infinitesimal operators J(Zl, Jd,, J& corresponding to the quaternion
subgroups Qf, Q1 Q4. The quaternion subgroups Q! (i = 1,2,3) arise from the fact
that all the ten parameters of Sp(1, 1) can be divided in three groups according the Cartan
decomposition (18) for the element q € Sp(1, 1). The subgroup 2% consists of the matrices

<14
e'r 0
w (tq) = ]

where the variable 77 has the form of quaternionic angles. Let q = q(¢?, 09, ¥7) be a matrix
with quaternion Euler angles (the matrix (18)) ¢? = ¢ — i€ +jg, 07 = 60 + ¢ —it, Y7 =
Y —ie —iw + ky. Therefore, Euler angles of the matrix qws(z?) equal ¢?,69, 7 =
t —ir — it + kt. Hence, it follows that

¢'(0) =0, €(0) =0, o' (0) = —i, 0'(0) =0,
¢'(0) =0, 7'(0) =0, Y'0) =1, '(0) =—
s'(0) =i, x'(0) =

3 Quaternion Euler angles of Spin, (1, 4) >~ Sp(1, 1) contain complex Euler angles 0¢ = 0 —it, ¢ = ¢ —ie, ¥ =
Y — ie of the group Spin, (1, 3) >~ SL(2, C) as a particular case (for more details see [30]).
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So, the operator J,,, corresponding to the subgroup 5, has the form
JI = ——i——i—+k—. (20)

Whence
0 0 0 0

M; = — N3 =—, Py =—, Py =
X

gy’ de T Yo @h

Let us calculate the infinitesimal operator J, corresponding to the quaternion subgroup
Q4. The subgroup Q7 consists of the matrices

coss isinZ
2 2
w1 (1) = ( . 14 ) .
1S1n 5 COoS 5
The Euler angles of these matrices equal to 0, 1 =t + et — it, 0, e is the double unit. Let us
represent the matrix qw; (#7) by the following product:

ge @l D Y LA | ket a0} 14 . .44
q COSTG 2 lSll’lTC 2 COS7 lSlIl7
qoi (1) = 94 §Wi=pD) 01 il v

. . . g4
lSln76 2 COSTG lSlIl7 COS7

Multiplying the matrices on the right-hand side of the latter expression, we obtain

cos09(t) = cos 07 cost? — sinH? sint? cos Y9, (22)
in04 q 4 gin 14 4 4+isint? sin ¥4
G910 _ i sin 09 cos t? + cos 07 sint? cos Y9 +1isint? sin Y 23)
. k
sin 64(t)
cos % cos et — sin & sin e i
i [p? O +y9 0] cod 5 5 - 5 5

el 3 ) 2 2 2 2 (24)

04(1)

cos —~

For the calculation of derivatives ¢’ (1), €' (), @'(t), 0'(t), ¢'(t), T/ (@), ¥/ (1), &'(t), '), x'(t)
at+ = 0 we must differentiate on ¢ both parts of each equality from (22) to (24). At this point,
we have p(0) = ¢, €(0) =€, ..., x(0) = x.

So, let us differentiate both parts of (22). As a result, we obtain

—sin09()[0(t) + eqp'(t) —it'(t)] = —cos O sint?(1 +e — i)
—sinf? cost?cosy?(1 +e —1).
Taking t = 0, we find that
0’ (0) + e’ (0) —it'(0) = cos y?(1 +e —i).
Whence
0'(0) = cos ¥, ¢’ (0) = cos Y4, 7'(0) = cos .
Differentiating now both parts of (23) and taking ¢+ = 0, we obtain

§'(0) —ie'0) +j¢'(0) = MY U re =D

sin 64
Therefore,
, sin ¢4 , sin Y4 , sin Y4
0) = , 0) = , 0) = — .
¢ (0) sin 09 €0 sin 04 s sin 09
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Further, differentiating both parts of (24) and taking ¢ = 0, we find that
¥'(0) —ie'(0) — iw'(0) +jx'(0) = (=1 — e +1i) cot 8¢ sin y?

and
Y’ (0) = &'(0) = x'(0) = —cot 07 sin 9, '(0) =0.
In such a way, we have
J9 =My + P —iN,, (25)
where
M, = cos ¢ % + SSIIZZZ % — cot69 sin w"%, (26)
Ny = cos wq% + ssl:rlllg: % — cot 67 sin wq;—e, 27
P, = cos 1//"% + Ssll?llg: % — cotf? sin 1//"%. (28)

Let us calculate now an infinitesimal operator J¢, corresponding to the quaternion
subgroup 2. The subgroup Q4 consists of the matrices

14 .
. cost  —sin%
wr(t)y = . >
t t
sinZ  cos &

2 2
where the Euler angles equal correspondingly to 0, ¢ = ¢t — ir + j¢, 0. It is obvious that the
matrix qw,(#?) can be represented by the product

: (7494 . s (1 -y .
cos & e isin z e\ [cos £ —sin%
qo (1) = (Wi 4y . a |-
isin%ewzw) cos%e_iwzw sing  cosy
Multiplying the matrices on the right-hand side of this equality, we see that Euler angles of
the product qw, (#7) are related by the formulae

cos09(t) = cos 07 cost? + sinH? sint? sin 4, 29)
ino? q_ 9 gin ¢9 sin ¥9 + isin t7 q
i1 _ ige SIN0T cost? — cos 69 sint? sin 7 +isinz cos i 30
e =e : , (30)
sin04(t)
94 a4 .ogr .o ¥l
g% @ ()] .44 COS 5 COS € 2 +sin % sin 572
=t is 2 2 2 2
e 2 =e' . (€28
09(t)
Cos ——

Differentiating on ¢ both parts of the each equalities (29)—(31) and taking r = 0, we obtain
0'(0) = 7'(0) = ¢'(0) = —siny*,

/ ! ! Ccos wq
9 (0)=€0)=¢(0) = — ,
sin 64
Y (0) = &'(0) = x'(0) = —cot 8% cos Y, ®'(0) = 0.

Therefore, for the subgroup 29 we have

ngz =M2—iN2 +jP2, (32)
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where
0 7 9 0
My = —sinypt 2+ VT 009 sin (33)
00  cosf4 dp oy
da cosy? 9 ad
Ny = —siny? — + ——— — —cot0? —, 34
: siny dt  sinf9 de cotd” cosyy ae 4
0 79 B
Py = —sinyt 2+ SV 09 cos 1 2 (35)
d¢p  sinf9 d¢ ad

Let us introduce an auxiliary quaternion angle ¥ =

Y —ie + kx. It is easy to see that

vl = wf’ — iw; therefore, wf is the part of ¥/¢. Further, taking into account expressions (21),
(26)—(28) and (33)—(35), we can rewrite the operators (20), (25), (32) in the form*

9 siny? 9

JI =cosy?— + Sl,nw — —cotf? sinyp? —,

! a0  sinf4 Jp9 81&{1

d 7 9 d

JI = —sinyy?— + CO.S—w_ — coth9 cos W’—q,

> 004  sin@4 9¢4 o,
o

w3 awq’

, .9 iny4 9 . .
Ji =cosy!— + SI.mk —— —cotf?siny? ——,

! 0609  sin69 0¢4 oy

. LD a9 . )
Ji = —sinyy? — + C(_)SI/., —— —cotf?cos ! ——,

> 009  sin69 9¢4 |
Jji = i

w3 awq’

where

d ad a .0 d d d .
—_— =+ — +i—, — = — - — —i
907 90 0d¢ Ot 061 960 09

ad g .9 .0 a ) .0 .
—_— = — it j—, —_— = — =i —j—
¢4 dp de “0g ap4 1) de

d d L0 .0 d ad ad .0
— = — +i—+i— +k—, —_— = — —i— =
aye oY  de o dx ova Y de

d d .0 d ad ad .0
—q=—+l—+k—, —.q:——l——
Yy oy de dx oyl oy de

ﬁ.

(36)

(37

(38)

(39)

(40)

(41)

Using expressions (36)—(38), we see that for the first Casimir operator F of the group SOy (1, 4)

there exists the following equality:
—~F=-P} - N>+
or

9* 9 1
—F =— +cotf? — +

P2 + Mz = (‘](31)2 + (_]‘12)2 + (‘]a({3)2’

w:

92 2cos6? 32

9042 964

sin2 09 942

+
sin? 69 990y

cot® 94

Y,

2

+W.

(42)

4 These operators look like as SU(2) type (or SU(2) ® SU(2) type) infinitesimal operators. However, it is easy to
verify that they do not form a group, since {9 # 1//;1.
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Matrix elements t7,(q) = 97, (94,09, y?) of irreducible representations of the group
SOy(1, 4) are eigenfunctions of the operator (42):

[—F +0(0+3)IM,(q) =0, 43)
where

M7, (@) = exp (—i(me? +n(Y] —iw)))37, (cos69), (44)

since Y4 = ¢/ — iw. Here, MY, (q) are general matrix elements of the representations
of SO((1,4) and 37, (cos67) are hyperspherical functions. Substituting the functions (44)
into (43) and taking into account the operator (42), we arrive at the following differential

equation:

d?*3% (cos@?) d3° (cos6?) m? 2mn cos 6049
mn q mn _ o q o q
— +cotf 107 oy 30, (cos07) + T 30, (cos07)
—n?cot? 037 (cos09) — nZSZn (cos0?) + o (o +3)37 (cosf?) =0,
or
[ d? d  m?>+n®—2mncos@?
i 9 _ o ay —
| 367 +cotf 37 e +o(o+ 3):| 35, (cos0?) = 0.
After substitution z = cos 07 this equation can be rewritten as
'(1 2) d? 5 d rr12+n2—2mnz+ (0 +3)]37 () =0 43)
— ) — 27— — " 406(0 =0.
i SR TR 1—z2 mn <

The latter equation has three singular points —1, +1, co. It is a Fuchsian equation. Indeed,
denoting w(z) = 39, (z), we write equation (45) in the form

2
d ;‘;EZ) ~p() d’gf) +g@w(2) =0, (46)
where
2z oo +3)1 —z%) —m? —n®+2mnz
rO= 0 0ry 197 (1= 22(1 +2)?2
Let us find solutions of (46). Applying the substitution
t = 1;Z, w(z) =1"7 (1 —1)"% ),
we arrive at hypergeometric equation
t(l—t)dz—v+[c—(a+b+1)t]d—v—abv(t):O, 47)
dr? dt

where
a:o+3+%(|m—n|+|m+n|),
b=—0+3(lm—n|+|m+n)),
c=|m—n|+1.

Therefore, a solution of (47) is

a,
v(t) =Ci2F,
c 2—c

b | b—c+1l,a—c+1
t +C2t762F1




Spherical functions on the de Sitter group 175

Coming back to initial variable, we obtain

lm—n| [m-4n|

1 — 2 1 2
o= (5) 7 (45

<o+3+%(|m—n|+|m+n|),—U+%(|m—n|+|m+n|)
X2l

1—z
2
1—z
> .

(48)

can be represented by the following particular

lm—n|+1

|m—n| [m+n]
1—z\" 2 [l+z)\ °
+C (—= =
2 2

—o +3(Im+n|—|m—n|), o +3+1(m+n| —|m —nl|)
X 2 Fy

1—|m—n|

Thus, from (48) it follows that the function 3¢

mn

solution:
04 04
331;1(005 911) = C1 Sil’llm_n‘ 7 COS|m+n| 7
o+3+3(m—n|+|m+n)), —o +3(m—nl+|m+nl)| 6
o sin® —
lm —n|+1 5
49)

In section 4 and 5 we will give more explicit expressions for the functions 37, (cos 07) via the
multiple hypergeometric series.

Finally, using formulae (39)—(41), we can obtain the same differential equation for
the function 39,(cos69). All the calculations in this case are analogous to the previous
calculations for 37 (cos67).

2.3. Homogeneous spaces of SOo(1, 4)

Before introducing the spherical functions on the group SO(1, 4) it is useful to give a general
definition for spherical functions on the group G. Let 7'(g) be an irreducible representation of
the group G in the space L and let H be a subgroup of G. The vector £ in the space L is called
an invariant with respect to the subgroup H if for all h € H the equality T (h)€ = £ holds.
The representation 7'(g) is called a representation of the class 1 with respect to the subgroup
H if in its space there are non-null vectors which are invariant with respect to H. At this point,
a contraction of 7'(g) onto its subgroup H is unitary:

(T (W&, T(hE&y) = (&1, &y)-

Hence, it follows that a function

f(e) =T @M, &)

corresponds to each vector n € L. f(g) are called spherical functions of the representation
T (g) with respect to H.

Spherical functions can be considered as functions on homogeneous spaces M = G/H.
In its turn, a homogeneous space M of the group G has the following properties:

(a) It is a topological space on which the group G acts continuously, that is, let y be a point
in M, then gy is defined and is again a point in M (g € G).

(b) This action is transitive, that is, for any two points y; and y, in M it is always possible to
find a group element g € G such that y, = gy;.
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There is a one-to-one correspondence between the homogeneous spaces of G and the coset
spaces of G. Let Hy be a maximal subgroup of G which leaves the point y, invariant,
hyo = yo,h € Hy, then Hy is called the stabilizer of yo. Representing now any group
element of G in the form g = g.h, where h € Hy and g. € G/ H,, we see that, by virtue of the
transitivity property, any point y € M can be given by y = g.hyyo = g.y. Hence, it follows
that the elements g, of the coset space give a parametrization of M. The mapping M < G/H,
is continuous since the group multiplication is continuous and the action on M is continuous
by definition. The stabilizers H and H, of two different points y and y, are conjugate, since
from Hygo = go, Yo = g~ ', it follows that gHyg~'y = y, that is, H = gHyg™".

Coming back to the de Sitter group G = SO (1, 4), we see that there are the following
homogeneous spaces of SOy(1,4) depending on the stabilizer H. First of all, when H = 0
the homogeneous space M coincides with a group manifold Sy of SO¢(1,4). Therefore,
&) is a maximal homogeneous space of the de Sitter group. Further, when H = Q7 , where

qu is a group of diagonal matrices

e% 0
0 e‘# ’

the homogeneous space Ms coincides with a two-dimensional quaternion sphere S,
Mg =87 ~ Sp(1, 1)/ Q2

We obtain the following homogeneous space My when the stabilizer H coincides with a
maximal compact subgroup K = SO(4) of SOy(1,4). In this case, we arrive at the upper
sheet of a four-dimensional hyperboloid My = H* ~ SO(1, 4)/SO(4). The upper sheet Hf
of the two-sheeted hyperboloid H 4 can be understood as a quotient space SO¢(1,4)/SO4).
Indeed, let us consider the upper sheet H; of H*:

Hf: xg—xlz—xg—x%—xle, xo >0 (50)

and the point x° = (1,0, 0,0, 0) on H}. The group SO¢(1,4) transfers the hyperboloid H}
into itself. Besides, for any two points x" and x” of H} there is such an element g € SO (1, 4)
that gx’ = x”, that is, SO (1, 4) is a transitive transformation group of the homogeneous
space. The set of elements from SO (1, 4), leaving the point x9 invariant, coincides with the
subgroup SO (4). Therefore, H;' is homeomorphic to the quotient space SOy (1,4)/SO(4). It
should be noted that a four-dimensional Lobatchevski space £*, called also a de Sitter space,
is realized on the hyperboloid H}.6

In the case xg — xlz — x% — x32 — x* = 0, we arrive at a cone C* which can also be
considered as a homogeneous space of SO¢(1, 4). Usually, only the upper sheets H;" and C?
are considered in applications.

The following homogeneous space M3 of SOy(1, 4) is a three-dimensional real sphere
§3 ~ SO4)/SO(3). In contrast to the previous homogeneous spaces, the sphere S°
coincides with a quotient space SO(1,4)/P, where P is a minimal parabolic subgroup
of SO((1, 4). From the Iwasawa decompositions SO¢(1,4) = KNA and P = M N A, where
M = SO(3), N and A are nilpotent and commutative subgroups of SO (1, 4), it follows that
SO¢(1,4)/P = KNA/MNA ~K/M ~ SO4)/SO(3).

3> When the stabilizer H is a compact group, the homogeneous space M = G/H is called a Riemannian symmetric
space [16]. When H is a non-compact group, we arrive at the non-Riemannian spaces. The homogeneous space
Mg = Sg ~ Sp(1,1)/ QZI is the non-Riemannian space, since the stabilizer H = Q7 is non-compact subgroup of
Sp(1, 1). Quaternion and anti-quaternion spheres were studied by Rozenfel’d [21].

6 Tt is obvious that among all the homogeneous spaces of SO¢(1, 4) the space Hf is the most important for physics.
In accordance with modern cosmology, Hf is understood as a spacetime endowed with a global topology of constant
negative curvature (the de Sitter universe).
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A minimal homogeneous space M, of SO(1,4) is a two-dimensional real sphere
§?~50(3)/S0(2).

Taking into account the list of homogeneous spaces of SO((1, 4), we now introduce the
following types of spherical functions f(q) on the de Sitter group:

o f(q) = M, (q) = e ™39 (cos#?)e ™" This function is defined on the group
manifold Gip of SOy(1,4). It is the most general spherical function on the group
SOp(1,4). In this case, f(q) depends on all the ten parameters of SOy(1,4) and for

that reason it should be called as a function on the de Sitter group. An explicit form of
3,
*§+lp,lo

me . (q) (respectively imfhﬁ (q)) for finite-dimensional representations and of 91, (q)
(resp. i)ﬁ;é ﬂp'lo(q)) for infinite-dimensional representations of SOg(1, 4) will be given
in sections 4 and 5, respectively.

o f(p?,07) = M (p?,07,0) = e’i“’q:")?(cos 0?). This function is defined on the
homogeneous space Mg = S; ~ Sp(1,1)/Q%, that is, on the surface of the two-
dimensional quaternion sphere Sg. The function 9 (¢?, 64, 0) is a five-dimensional
analogue of the usual spherical function Y;" (¢, ) defined on the surface of the real
2-sphere S. Inits turn, the function f(¢?, §9) = IN?(¢?, 64, 0) is defined on the surface
of the dual quaternion sphere S'f]. An explicit form of the functions I (¢, 67, 0)

(M (¢9,69,0)) and MW", . (p?,69,0) (M (¢7,67,0)) will be given in
2

ip.lo —3—ip.l
section 4 and 5.

o fle,T,6,0) =M, (€, 7,8 w) = e"P7 (cosht) e This function is defined on

the homogeneous space My = H? ~ SO (1, 4)/SO(4), that is, on the upper sheet of the

hyperboloid x3 —x7 —x7 —x7 —x7 = 1. Anexplicit form of the functions 97, (¢, 7, &, ®)
; 3h e
(Dﬁﬁnﬂ (e, 71, ¢, w)) and zm,,,;* p(e, 7,8, ) (smm; p(e, T, €, a))) will be given in section 4
and 5.
o flp.0,9) = M7 (0,0,9) = e ™ P (coshe™ (or f(s.d,x) =

me (s, 0, x) = e ims P? (cos¢) e X). This function is defined on the homogeneous
space M3z ~ §3 = S0O(4)/SO(3), that is, on the surface of the real 3-sphere
xg + x12 + x% + x§ = 1. In essence, we come here to representations of SOy(1,4)
restricted to the subgroup SO (4).

o f(p,0) = M (p,0,0) = e Pl (cos0) ~ Y (¢, 0) (or f(5,¢) = M (s, 9,0) =
e "M PM(cos¢) ~ Y!'(s,¢)). This function is defined on the homogeneous space
My =852~ S0O(3)/SO(2), that is, on the surface of the real 2-sphere S>. We come here
to the most degenerate representations of SO¢(1, 4) restricted to the subgroup SO (3).

3. Spherical functions on the group SO(4)

As is known, the group SO(4) is a maximal compact subgroup of SOy(1,4). SO(4)
corresponds to basis elements M = (M, M, M3) and P = (P, P», P3) of the algebra
so(1,4):

(M, Mj] = ierym My, [My, Pi] = ieim P, [P, Pr] = iegim My (51)
Introducing linear combinations V = (M + P)/2 and V' = (M — P)/2, we obtain
[V, Vil = iggim Vi, [V, V/1=ieumV,, (52)

The operators V and V' form bases of the two independent algebras s0(3). It means that
SO (4) is isomorphic to a direct product SO(3) ® SO(3).
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A universal covering of SO(4) is Spin(4) ~ SU(2) ® SU(2). The one-parameter
subgroups of Spin(4) are

" i 0 )
els 0 els 0 COos 3 1Sz

mp(y) = . m|3(¢>=( _iw), mu@) = 7 2.
0 e2 0 ez isin§ cos§

2
iz is ¢ idin?
pua(x) = <e02 _le) ; pau(s) = (e ’ _Oi;>, (@) = (_C(?S z IO 2) ,
e 0 e™ isin? cos?
where
0<0<m, 0<op<m,
0< ¢ < 2m, 0< ¢ < 2m,
=2 < Y < 2m, =2 < x < 2m,

A fundamental representation of the group Spin(4) ~ SU((2) ® SU(2) is defined by the
matrix (16).
On the group SO (4) there exist the following Laplace—Beltrami operators:
VI=Vl+V;+ V) =2(M*+P>*+2MP), (53)
V2 =V?+ V) +V{? = 1(M?+ P> —2MP). (54)
At this point, we see that operators (53), (54) contain Casimir operators M 24 P2 MP of

the group SO (4). Using expressions (17), we obtain a Euler parametrization of the Laplace—
Beltrami operators,

2 92 , 0 1 92 , 0 0 92
Vv +cotf + — 2cosf + ,

T 962 36¢ " sin?6¢ | 0g?? 3g° 0y 9y 55)
, 9 L0 [ N I B
V= - + cot6 — + — .——2COSQ - — + N .
962 96¢ " sin20¢ | 9p<2 9g¢ dYe 9y

Here, 0¢ =0 — ¢, ¢¢ = ¢ — ¢, ¥¢ = ¥ — x are conjugate double angles.
Matrix elements ., (g) = M (¢¢, 0¢, ) of irreducible representations of the group
SO (4) are eigenfunctions of the operators (55),
[V +10+ DI, (¢, 6, %) =0, 56
(V2 +i(+ DI, (¢°, 6°, ) =0,
where
smﬁ,m (g) = e’i(’"“’q”‘”g)Bﬁm (cos ),
M, (g) = 0 I3] (cos ).
Here, sm;m (g) are general matrix elements of the representations of SO (4) and 3£nn (cos 0°)
are hyperspherical functions of SO (4). Substituting the functions (57) into (56) and taking

into account the operators (55) and substitutions z = cos6°, Z = cos 6¢, we come to the
following differential equations:

(57)

d2 d 2 2_2
[(1—Z2)@—2Z£—’n+f_—zzm+l(l+l)i| ann(Z):Os (58)

*9 d2 « d I’f"l2+l;l2 —2ml’l; .. i *
-2)— -2t -0 Z 2 g+ 1) | 3,3 =0. (59)

dz2 dz 1—z2
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The latter equations have three singular points —1, +1, co. Equations (58), (59) are Fuchsian
equations. Indeed, denoting w(z) = 3£,m (z), we write equation (58) in the form

2
d d“f) - p(z)d’gf) +g@w(2) =0, (60)
where
2z I+ 1)1 =22 —m? —n® +2mnz
PO=0"90a+s 197 (1= 2)2(1 +2)?

The solution of (60) is

jm—n| m-4n|

1— 2 1 2
wo-e (57 (5)

<l+1+%(|m—n|+|m+n|),—l+%(|m—n|+|m+n|)
X 21

1—z
2
1—z
5 .

(61)

lm —n|+1

|m—n| [m+n|
1—z\ 2 1+ 2
+C [ —= =
2 2

(—l+§(|m+n| —|m—nl),l+1+3(m+n|—|m—n|)
X2F1

1 —|m—n|

It is obvious that a solution of (59) has the analogous structure.

Let us now consider spherical functions f(g) and homogeneous spaces M = SO(4)/H
of the group SO (4) depending on the stabilizer H. First of all, when H = 0 the homogeneous
space My coincides with a group manifold K¢ of SO(4). Therefore, K¢ is a maximal
homogeneous space of the group SO (4). Further, when H = €2, where Q7 is a group of
diagonal matrices

e% 0
0 %)’

the homogeneous space My coincides with a two-dimensional double sphere S5, My =
S5 ~ Spin(4) / Qf}j The sphere S5 can be constructed from the quantities z;x = x; + ey,

Ek = x; — ey (k =1, 2, 3) as follows:
S5 D+ =X +y’ + 2exy =P, (62)

where e is a double unit, ¢* = 1. The conjugate (dual) sphere S; is

S5: 212+ 222 + 752 :x2+y2—Zexy:;2. (63)

We obtain the following homogeneous space M3 when the stabilizer H coincides with a
subgroup SO (3). In this case, we have a three-dimensional sphere M3 = S° ~ SO (4)/S0O(3)
in the space R*.

Finally, a minimal homogeneous space M, of SO(4) is a two-dimensional real sphere
Sy ~ SO@3)/SO(2). All the homogeneous spaces of SO(4) are symmetric Riemannian
spaces.

Taking into account the list of homogeneous spaces of SO(4), we now introduce the
following types of spherical functions f(g) on the group SO (4):
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o f(g) = Dﬁfnn (g). This function is defined on the group manifold K¢ of SO (4). It is the

most general spherical function on the group SO(4). In this case, f(g) depends on all
the six parameters of SO (4) and for that reason it should be called as a function on the
group SO (4).

flp,6°) = M (¢ 0°0). This function is defined on the homogeneous space
My =85 ~SO04) / Q‘f// that is, on the surface of the two-dimensional double sphere
S5. The function 9" (¢, ¢, 0) is a four-dimensional analogue of the usual spherical
function Y;" (¢, 8) defined on the surface of the real 2-sphere S2. In its turn, the function
f(@¢,6°) =M (¢, 6¢,0) is defined on the surface of the dual sphere S5.

f,0,%) = e Pl (cos@)e ™ (or f(g, ¢, x) = e ™ P! (cosgp)e "t). This
function is defined on the homogeneous space M3z ~ § =504 /SO (3), that is, on the
surface of the real 3-sphere xg + x% + x% + x32 =1.

f(p,0) = e ™ P"(cosO) ~ Y/"(¢,0) (or f(s,P) = e "™ F"(cosd) ~ Y"(5, ¢)).
This function is defined on the homogeneous space M, = S ~ SO(3)/S0(2), thatis, on
the surface of the real 2-sphere S°. We come here to the most degenerate representations

of SO (4) restricted to the subgroup SU (2).

First, let us consider spherical functions f(g) = M. (g) = e "3 (cos6¢)e V" on

the group manifold K¢ of SO(4). The Laplace—Beltrami operators Aj (R¢) and ZL (Rs)
coincide with (53) and (54). Spherical functions of the first type f(g) = sz,m(g)
(f(g) = E)ﬁf,m (£)) are eigenfunctions of the operator A (Re) (ZL (Rs)). With the aim to
find an explicit form of hyperspherical functions on 3! (cos6¢), we will use an addition
theorem for generalized spherical functions P!, (cos ) of the group SU(2) [31]:

1
e 1 pl (cos ) = Z e %2 Pl (cos6)) Pl (cos ), (64)
k=—1

where the angles ¢, ¥, 6, 0}, ¢,, 6, are related by the formulae

cos @ = cos b cos B, — sin b sin b, cos ¢y, (65)
i sin 6 cos 6, + cos 6 sin 6, cos ¢, + isin 6, sin @, 66)
e = -
sin 6 ’
;92 . . _i%2
ity cos %‘ cos %2 e!'? —sin %1 sin %2 e '3
e 2 = 7 . 67)
cos 5

Let cos(0 + ¢) = cos 8¢ and ¢, = 0, then formulae (65)—(67) take the form

cos0° = cosf cos ¢ — sinf sin ¢,
sin @ cos ¢ + cos 6 sin ¢

eV = ; 1
sin 0¢
iy COS S cos % — sin § sin "5’ X
e 2 = " =
cos 2

2

Hence, it follows that ¢ = ¢ = 0 and formula (64) can be written as

1
3fnn (cos 06) = Z Prlnk (cos Q)Plfn (cos b). (68)
k=—1
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Bfm (cos 0¢) are hyperspherical functions of the group SO(4).” Using an explicit expression
for the function P,im [30, 31], we obtain
!
3l (cosf®) = Z i STl —m+ DCA+m+ DI —k+ DT +k+1)
k=—1

2 m—k g

0
X €cOos™ —tan
2
in(l—m,l+k 22 i
min(/—m,l+k) 121 tanzf g

<) FTG+D0(—m—j+ DI U+k—j+D0m—Fk+j+1)

Jj=max(0,k—m)

X VT =n+ DI +n+ DI —k+ DI +k+ 1) cos? %tan"*k "%

min(l—n,l+k) i2s tanZs Q
2

<y |
Fr's+HI'd—n—s+DI'l+k—s+DI'n—k+s+1)

s=max(0,k—n)

(69)
On the other hand, the function 3! (cos6¢) can be expressed via the hypergeometric

function. Using hypergeometric-type formulae for P!, [30, 31], we have atm > n

Frd+m+DI'd —n+1 0
SZLn(cosGe):im_"\/( m+ DI —n )00521—

!
0

cos? ¢ Z tan” % = tan* " ¢

2 = 2 2

L6 k—1,—n—1
—tan” — | » F}
2 k—n+1

m>k, k=>=n; (70)

Td—m+ D +n+1) 2

m—1,—k—1
R\

!
Fd+m+DI'd—n+1 0 0
3l (cosf®) = \/ (am+ DG —n+1) cos? — cos? ¢ E "2k tan ~k — tan" ¢ ¢

ri—m+1Dr'd+n+1) 2 2 = 2 2
m—1,—k—1 0 n—I1,—k—1
X 2 F —tan® —  F —tanzf ,
m—k+1 2 n—k+1 2
m=>=k, n>k; (71

andatn > m

i
ri—m+nDrd+n+1 0 6
3l (cos0) =i"" (=m+DlA+n+1) cos? = cos? ¢ E tan* ™" = tan" ¥ ¢
rd+m+nHI'd—n+1) 2 2k=7[ 2 2
—tan2 f),
2

k—1,—m—1 , 0 n—1,—k—1
X 2 Fy —tan” — | 2 F}

k—m+1 2 n—k+1
k>m, n>k (72)

7 The functions 3! (cos#¢) and 3Z (cos6°) form a representation of the type (/,0) @ (0,[), that is, when

mn i
| = I. In the case of tensor representations, when [ # i, we arrive at the functions SZM.M (cos0¢, cos ) =
3£ml (cos 96)3;”41 (cos 8°) (generalized hyperspherical functions of SO (4)), which can be expressed via the product
of the two generalized hypergeometric functions 3 F (Ot,aﬂ ;V |x) In the case of Lorentz group, general solutions

of relativistic wave equations for arbitrary spin chains (tensor representations) are defined via an expansion in

generalized hyperspherical functions ?)gm: Jan (COS 0, cos 6¢) of SO0 (1, 3), where 0¢, 6¢ are complex Euler angles of
Spin, (1, 3) >~ SL(2,C) [28].
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I
TU—m+ DT +n+1) 20 b 6
1 e 21 21 2k—m—n k—m k—n
6¢) = O s ? = O tantn @
B €080 =\ s DU —nr D) © 2 2];' g
k—1,—m—1 0 k—1,—n—1
x 2 F —tan® = | L, Fy —tanzf ’
k—m+1 2 k—n+1 2
k>m, k=>n. (73)

By way of example let us calculate matrix elements . (g) = e "¢ 3 (cos¢)e V" at

[ =0,1/2,1, where 3£,m (cos 0°) is defined via (69) or (70)—(73). The representation matrices
at/ =0, %, 1 have the following form:

To(e®, 0% ¥°) =1,

(74)
! ! ipead iy igead iy
mE, o, My ex¥ 3, e2 e2? 3’ ez
7"1 e 9@ e — 2 2 2 2 — 2 2 22
L9 6% ) % % et
me,, g, e 237 ez e 2937 ez
22 22 2 2 22
i_e e ige o i_e e _i.e
ez’ cos%ezw jez? sin L e 2V

. . i(p+s+yr+x)) . . . ilpte—v—x)
cos%cos%—smgsm%]e 7 l[cos%sm%+sm§cos%]e 7
= . . . i(—p—c+y+x) . . —ilpts+y+n) |
ifcosZsin? +sinZcoslle 2 cos%cos? —sinlsinlle >
2 2 2 2 2 2 2 2
(75)
1 | 1 i 21 e Ligtal il iyt
(E)ﬁ—l—l M2y, My, e¥ 3 e e 3,y €¥ 3 e
e pe e 1 1 1 1 iy 1 1 iyt
Ti(p%, 0% 9) = | My, My, My, | = 36 300 3067
My My, My, e W3 eV e 3l e 3l e
ip¢ 2 0° Liy SIS (L _al9f qin2 0 o—iy©
e cos” S e Ne sin 6 e'” sin” 5 e
= L ginge eV’ cos 0¢ A singe e Ve
V2 V2

_eTi9 gin2 & eIV L o—ief ginge  e1¢ cog2 & o1V
e ¥ sin” S e Nk sing® e cos” S e

20 cog2 & _ sinfsing 020 02 7 Gilprotyx) i i i i(p+c)
[cos 3 cos” 5 > +sin” 3 sin Z]e ﬁ(cos(951n¢+sm9cos¢) e

= [%(cos@ sin ¢ + sin 6 cos ¢)] el+0 cosf cos ¢ — sinf sin ¢

—[cos? £ sin? & + S0EANS 4 gjn2 & cos? £]elemsH0 [ﬁ (cos 6 sin ¢ +sin 6 cos ¢)] e iw+e)

2

_ 20 in2 @ , sinfsing 1020 2 7 ailprs—¥—x)
[cos? § sin? § + SMEL 4 in? £ cos® § e

[%(0089 sin ¢ + sin 6 cos q))] i+ 76)

20 cog2 & _ sinfsing o020 02 @] —ilprstYtn)
[cos? & cos? £ e 1 sin? § sin £]e

Spherical functions of the second type f(¢°, 6¢) = M} (¢, 6¢,0) = e_i’”“’e3;” (cos6°),
where

!
3/ (cos0¢) = Z P,ﬁlk(cos Q)P/‘ (cos @)
k=—1



Spherical functions on the de Sitter group 183

is an associated hyperspherical function, are defined on the surface of the double 2-sphere
(62). The function 3}"(cos 6¢) is an eigenfunction of the Laplace—Beltrami operator A, (S;)

defined on the double 2-sphere,
92 0 1 92
AL (SS) = —— +coth” + .
L(83) = gge + oot S+ g 992

Hypergeometric-type formulae for 3;"(cos 6¢) are

i
'l+m+1 0 0
3/ (cos0¢) =i" u cos? = cos? ? Z tan” % = tan® ?
Tl —m+1) 2 2 ~ 2 2
- m—1,—k—1 , 0 F k—1,—I
X —tan” —
2 by 5 ) 2 e+l

m—k+1

!

m en  Pd=—m+1) 0 ¢ Sk kem O k@
3" (cos ) = Flem+D) cos 2cos 221 tan 2tan

(k—l,—m—l
X2F1

k—m+1

We obtain an important particular case from the previous formulae at m = n = 0. The function
Zi(cos0¢) = {)0 (cos 0°) is called a zonal hyperspherical function. The hypergeometric-type
formula for 3;(cos 6¢) is

9 0
3/(cos0¢) = cosﬂ os? d) Z i*ta t k d)

2
k—1, -1 0 k—1,—1
><2F1< i+l —tan2§> 2F1( e+ 1 —tanzg).
+ +

In its turn, the function f(¢¢,6¢) = ei”’“}e:‘};”(cos 6) (or f(6¢) = 3;(cos6°)) is defined on
the surface of dual sphere (63). Explicit expressions and hypergeometric-type formulae for
f(¢°, 6¢) are analogous to the previous expressions for f(¢°, 6¢).

Spherical functions of the third type f(¢,0,v¥) = e ¥ P,im (cos@)e "V (or
flc, ¢, x) = eims P,fm(cos ¢)e "x) are defined on the surface of the real 3-sphere
§3 = S0(4)/SO(3). These functions are general matrix elements of representations of the
group SO (3). Therefore, we have here representations of SO (4) restricted to the subgroup

SO(3). Namely,

T\ 506) = Z 0", (77)

where spherical functions f (<p, 0, ¥ ) of the representations Q" of SO (3) form an orthogonal
basis in the Hilbert space L2(S?). Various expressions and hypergeometric-type formulae for
f (@, 0, ) are given in [30, 31].

Finally, spherical functions of the fourth type f(¢,f) = e "¢ P"(cos®) ~ Y/"(p,0)
(or f(c,¢) =e s P/"(cos¢) ~ Y/" (g, ¢)) are defined on the surface of the real 2-sphere.
We have here representations 7 ¢§gg; of the type (77), where associated spherical functions
f(p,0) ~ Y/"(p,0) of Q™ form an orthogonal basis in L?(S?). These representations are the
most degenerate for the group SO (4).
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4. Spherical functions of finite-dimensional representations of SOy(1,4)

Let us come back to the de Sitter group SOp(1,4). It has been shown in section 1 that
spherical functions of the first type f(q) = DM, (q) = e "¢" 37, (cos#9) e V" are defined
on the group manifold Gy of SO¢(1, 4). With the aim to find an explicit form of hyperspherical
function 37, (cos67) of the group SOy(1,4), we will use the addition theorem defined by
formulae (64)-(67). Let cos(@ + ¢ — it) = cos(f® — it) = cosf? and ¢, = 0, then
formulae (65)—(67) take the form

cos 09 = cos9¢ cosht +1isinH° sinh T,
sin9¢ cosh T — icos 6 sinh ©

ew — - — L
sin 04
e . . € .
gty  COS 97 cosh 5 +isin 97 sinh 5
e 2 fred 57 = l
oS 5

Hence, it follows that ¢ = ¢ = 0 and formula (64) can be written as

30, (cos?) = Z 30k (cos 6°)PL, (cosh 1), (78)

k=—0

where 37 (cos0¢) is the hyperspherical function of the compact subgroup SO(4) (see
formula (68)):

304(cos0) = Y Py, (cos0) P (cos ¢).

t=—0

It is easy to verify that if we take cos(6 + ¢ — it) = cos(¢p + 6¢) = cos6? and ¢, = 0 in
formulae (65)-(67), then we arrive at the function

3p(cos6h) = 3 Py (cos $)3, (cos 6),

k=—0

where

30, (cos ) = Z P¢ (cos 0)B7, (cosh 1)

t=—0

is the hyperspherical function of the subgroup SO(1, 3). In such a way, the hyperspherical
function 37 (cos 67) can be factorized with respect to the subgroups SO (4) and SO (1, 3).

Further, taking into account the expression for 3¢, (cos#¢), we can rewrite (78) in the
following form:

30,(cos09) = Y 3" Pg (cos0) P (cos )Py, (cosh 7). (79)

k=—0 t=—0

Analogously, for the factorization of 37, (cos09) with respect to the Lorentz subgroup
SOy(1, 3) we have

30,(cos09) = Y 3" Pg (cos p) Pf; (cos )Py, (cosh 7).

k=—0 t=—0

We consider here only the factorization of 37, (cos 09) with respect to the maximal compact
subgroup SO(4). Thus, formulae (78) and (79) define a hyperspherical function of the
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de Sitter group SOy(1, 4) with respect to SO (4). Further, using (69), we obtain an explicit
expression for 39 (cos67),

37 (cosf?) = Z Z "2 T(oc —m+ Do +m+ DI(c —t+ DI (0 +1+1)
k=—0 t=—0

.

&
x 08>’ — tan
2 2

min(o —m,l+t) i/ tan2/ 0
2

<) TG+l —m—j+)lo+7—j+Dlm—1+j+1)

Jj=max(0,r—m)

x/T(o —k+ DI (0 +k+ 1) (c —t+ DI (0 +1+ 1) cos® %tank_’ %
min(dik,aﬂ) i2s tanz“’%
x F's+DHl'oe—k—s+DI'(c+t—s+DI'k—t+s+1)

s=max (0, —k)

x/T(o —n+ 1) (oc+n+1)I(c —k+ 1) (0 +k+ 1) cosh® %tanh”_k %

min(o —n,o+k) tanth T
2

. |
o P 'p+Dl'lc —n—p+Dl'(c+k—p+HI'n—k+p+1)
(80)

It is obvious that the functions 37, (cos 69) can also be reduced to hypergeometric functions.
Namely, these functions are expressed via the following multiple hypergeometric series®:

Fo+m+DI'(c —n+1 0
BZM (cos 94) _ (0 +m (o —n ) COSzU -z COSZU ? COShzg E
FNo—m+DI'(c+n+1) 2 2 2

k=—0 t=—0

m—o,—t—o , 0
X 2 Fy —tan” — | o F} —tan” —
m—t+1 2 t—k+1 2
k—o,—n—o , T
X2F1 tanh” — .
k—n+1 2
m>=t, t>k, k=>=n; (81)

8 The hyperspherical functions 30, (cos6?) of SOu(1,4), 3£nn (cos0¢) of SO(4) and SLM (cos0°) of SO(1,3)
can be written in the form of hypergeometric functions of many variables [3, 11]. So, the functions 3£,ln (cos6°)
and 3ﬁ,m (cos6¢) can be expressed via the Appell functions, 3{,1,, (cos0¢) ~ F4[Z;’ Zi | X1 xz] and 3£nn(cos 0) ~

F4[ZL’ZZ |x1; yi], where x; = tan®0/2, x; = tan® ¢/2, y; = tanh® t/2. In its turn, the function 3%, (cos#?)

a, dz, ds
as, as
CEI_O ~ (X 3, where C{ 3 is the algebra of double biquaternions with a double quaternionic division ring K >~ H@ H;
Spin, (1,3) € CKTV3 =~ (¥3,09, where Cl3 ( is the algebra of complex biquaternions with a complex divisionring K >~ C;
Spin, (1, 4) € C}, ~ Cly 3, where (¢, 3 is the spacetime algebra with a quaternionic division ring K ~ H, we see
that there is a close relationship between hypercomplex angles of the group Spin, (p, ¢), division rings of CZ;',’ g Oon
the one hand and hypergeometric functions of many variables on the other hand. A detailed consideration of this

relationship comes beyond the framework of this paper and will be given in a separate work.

is reduced to the Lauricella function, 3, (cos6?) ~ lIl3[ |x|; X2 yl]. From the relations Spin(4) €
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Fo+m+1DHI'(c —n+1) 2 0 2 P 2 T
o 1) = o o 7 h2e =
S (€056 \/F(a “mr Dl en+ D) 28 g

- - em+k—2t m—t 0 k—t ¢ k—n T
X E E i tan”™" —tan" ' —tanh"" —
2 2 2

k=—0 t=—0

m-—o,—t—o 5,0 k—o,—t—o )
X 2 Fy —tan” — | o F} —tan” —
m—t+1 2 k—t+1 2
k—o,—n—o 5T
x 2 Fy tanh” — |,
k—n+1 2
m2>t, k>t, k>n; (82)

[lo—m+1Dl(c+n+1 0
3ma(cos?) = o—m+ Do +n+1) cos® — cos™ ¢ cosh =
Fro+m+1)I'(c —n+1) 2 2 2

% E § lk m g —m _tankft

k=—0 t=—0

t—o,—m—o
X 2 Fy

t—m+1 2 k—1r+1
n—o,—k—o
x 2 F) tanhzz ,
n—k+1 2
t>m, k>t, n > k; (83)

IN'oc—-—m+DI'(c+n+1 0
37 (cos6?) = (0 —m+ Dl +n+1) cos?® = cos?® ¢ cosh? =
To+m+ D)l —n+1) 2 2 2

v Demk o -m Ok @ n—k ¥
X E E i tan —tan'~" = tanh" ™" —
2 2 2

k=—0 t=—0
t—o,—m—o , 0 t—o,—k—o
X2F1 —tan” — 2F1
2 t—k+1

t—m+1

n—o,—k—o
X o Fy tanhZE ,
n—k+1 2
t>m, t >k, n zk; (34)

IN'o—m+DI'(c —n+1 0
30 (cos6?) = (0 -m+Dlo—n+1) cos’® = cos>® ¢ cosh® 2
FNo+m+Dl'(c+n+1) 2 2 2

Fo+k+1) 0 0] T
sk—m t—m k—t k—n

— —t — tanh —
x ZZ T —k+n m plm oy

k=—0 t=—0
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t—o,—m—o
x 2 F
t—m+1

k—o,—n—o 5T
X 2 F) tanh” — |,
k—n+1 2
t>m, k>t, k > n; (85)

F'oc—m+1DI'(c —n+1 0
37 (cosf?) = (¢ —m+Dlo—n+l) cos™® 2 9 e L
T(o+m+Dl(oc+n+1) 2 2 2

IF'oc+k+1) 0 P T
2t—m—k t—m t—k k—n

— — 1. — tanh' —
x ZZ T —k+n m phn oy

k=—0 t=—0

F t—o,—m—o , 0 F t—o,—k—o , ¢
X —tan™ — —tan™ —
> t—m+1 2 ) t—k+1 2
k—o,—n—o
X o F) tal’lhZE ,
k—n+1 2
t>m, t >k, k>n; (86)
Fo+m+DHI'(c+n+1 0
37, (cos0?) = (0 +m+ VI +n )cosza—cosz"?coshz‘7
Noc—m+1DI'(c —n+1) 2
o —k+1 0
X Z Z i L@ )tn’“_’—tan""ftanh”_kE
== F'(c+k+1) 2 2 2
m-—o,—t—o 2] t—o,—k—o
X o Fy —tan’ — 2 Fy —tan? Q_S
m—t+1 2 t—k+1 2
n—o,—k—o
x 2 F) tanh23 ,
n—k+1 2
m>t, t >k, n>k; &7)

IN'No+m+1DIl'(c+n+1 0
37 (cosf?) = (c+m+ DG +n+1) cos™® 2 & e L
IF'oc—m+1Dl'(c—n+1) 2 2 2

r k+1 0
% Z Z k-2 L (0 — ) SO TEF D) et L ank 4 tanh"—* &
I'o + T(o+k+1) 1) 2 2 2

, 0 k—o,—t—o
—tan” — | 2 F}
2 k—t+1

k=—0 t=—0

m—o,—t—o
X 2 Fy
m—t+1

F n—o,—k—o hzr

X tanh™ — |,

S R | 2

m>t, k>t, n=>k. (88)

As is known, matrix elements of finite-dimensional representations of SOq(1,4) are

expressed via the functions f(q) = 9, (q) = e "¢ 3% (cosH?)e "V’ where 39 (cos89)
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is defined by (80) or (81)—(88).” For example, let us calculate matrices of finite-dimensional
representations at o = 0, 1, 1:

v 3
To(p?, 09, Y1) =1, (89)
1 1 gl e igol "
m:, o, M, e 3%, ezl e 32,72
2 2 2 2 2 2 22
T% ((oq’ 9‘1, wq) — A | = ol e i) i g
m:,, M, e %31 eV’ 2?37 eV
23 32 1732 32
ex? cos Le?  jer? sinL e 2V’
=\. ipa . 20‘1 iya i :q ig (90)
ie 2¢ sm765‘/’ e 2% 005767‘/’

[ z ¢ _gin? Tsin 2 +isin 2 sinh £ cos € +i 9 ginh I sin €] 3 (etetotipHy —jx+ke)
([cos 5 cosh 5 cos 5 — sin 5 cosh 5 sin 5 +isin 5 sinh § cos 5 +icos 3 sinh 7 sin 3 ] e
9 sinh £ ¢ _sin? sinh Zsin € +isin 2 z ? 4 [4 7 sin 2] e (Ero—etiv—ig—jx—ks)

[cos 5 sinh 7 cos § — sin 7 sinh 7 sin 5 +isin 5 cosh 7 cos § +icos 3 cosh 5 sin £ | 2

9 ¢inh L cos & — sin 2 <inh Z si
[coszsmhzcos2 sin 7 sinh 3 sin

[
2

i 0 Tain? +isin T
+icos 5 cosh 7 sin § +1isin 5 cosh 7 cos

% e%(&*S*ﬁHigD*il/fﬁi){i»kg)
[ )’
2

]
] e%(—é—s—w—iw—izjﬁ—jx —kg

0 T [ 0 Tain® 4 [ Tain® 2iaint o T
[cos 5 cosh 508 5 —sin 3 cosh 5 sin s +icos 3 sinh 3 sin3 +isin3 sinh 5 oS
1)
1 1 1 ip? 91 iy 791 ip? 91 —iy
M-y MMy, My, 3 e e 3y €3 e
q pq 9\ — 1 1 1 _ 1 iy 1 1 .-y
Ti(p?, 07, y)=| My, My, My, =] 3o_i¢ 300 3o €
1 1 1 —igp¥ 91 iy —ip? 91 —ig? 91 L—iy?
m_, My, My, e3¢ e 3y e 3 e
i0? .92 91 aiv! A big? ¢inp?  _el?’gin2 9 iV
e cos” 5 e 75 sin @ e¥’sin” 5 e
i iyd i —iyd
= L 5in g9 ¥ cos 64 1 sing%e
7 0 7 : (92)
q

—e " sin® £ eV’ \sz e ¥ sinh? e ¥ cos? & eV’

where

sin#? = sin 6 cos ¢ cosh T + cos 6 sin ¢ cosh T — icos O cos ¢ sinh T +1isin 6 sin ¢ sinh ,

cos 09 = cos 6 cos ¢ cosh T — sin 6 sin ¢ cosh T +icos O sin ¢ sinh T +isin 6 cos ¢ sinh t,

01 0 1 0
sin? — = sin® = cos’ ? cosh? T + — sin @ sin ¢ cosh T + cos® = sin’ f cosh? T
2 2 2 2 2 2 2 2
i 0 0 0
I sin — cos 2 + cos — sin ? sinh 7 — cos? = cos? q_& sinh? z
2 2 2 2 2 2 2 2
0
— sin® = sin® ? sinh? E,
2 2 2
01 0 1 0
cos’ — = cos’ — cos’ 9 cosh? r_- sin sin ¢ cosh 7 + sin’ — sin’ ? cosh? z
2 2 2 2 2 2 2 2
i 0 0 0
+ ! sin — cos ? + cos — sin q_ﬁ sinh 7 — sin® = cos? 4—5 sinh? L
2 2 2 2 2 2 2 2
0
— cos? = sin? ? sinh? E.
2 2 2

It is easy to see that T% (91,01, ¢ ?) is the fundamental representation (18) of Sp(1, 1).

9 The functions f(q) =M, (q) are eigenfunctions of the Laplace-Beltrami operator Ay (&19) = —F defined on
the group manifold Sy of SO¢(1, 4). An explicit expression for Ay (Sy9) = —F is given by formula (42).
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Spherical functions of the second type f(¢?, 87) = M7 (94, 64,0) = g ime! 3% (cos09),
where

30 (cos?) = Z Z o (cosB)P, k(cos¢)’}3 (cosh 1)

k=—0 t=—0
is an associated hyperspherical function of SO¢(1,4), are defined on the surface of the
quaternion 2-sphere Sg. 3" (cos#?) are eigenfunctions of the Laplace—Beltrami operator

AL(S;) = —F,
02 1 02
+eotf! — + ————.
904? 009 sin? 09 dgi?
Hypergeometric-type formulae for 37 (cos 69) are

IN'o+m+1 %
3" (cosh?) = M cos®® = cos*® f cosh?® L
T —m+1) 2 2
. nmfl 9

tanhk

81(5) =

—tan® —
2

X,
oo
5
oD
/\
-~
-~ |
| Q
=
+ =
=
Q
o
<
S—"

k—o, 5 T
X 2 Fy tanh
+1 2
. L2k
Fo+m+1 0
32 (cos0?) = M cos’® = cos>® f cosh?” z
No—m+1) 2 2 2

o ag 9 ¢ T
% im+k—2tt m ~ tan k—t t hk s
k;a Z‘; an"™" 5 tanh®
2] k—o,—t—o
—tan® — 2 F —tan? q_b
2 k—t+1 2

tanh2 E),
2

N'No—m+1) 25 O 2 @ 2 T
———cos”? = cos”® = cosh™® —
Fo+m+1) 2 2 2

F'o+k+1 0
X Z Z ik ’”(G—)tan’_m—tank_ —tanh"z
To—k+1) 2 2 2

m—o,—t—0

("
=

x 2 F

k—o,—
k+1
7 k>t7

x 2 F

32 (cos0?) =
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IN'oc—m+1 %
3" (cosh?) = ,l"((ao+—nn11-|-1)) cos’® 3 cos>? (Z coshz‘r

2
I'lc+k+1 6
X Z Z i kMtan’ Etan’ k—tanhkE

== 'o—k+1) 2 2
t—o,—m—o 0 t—o,—k—o
x 2 F) —tan® = | L F} —tanZQ
t—m+1 2 t—k+1 2
k—o,—0o 5 T
x 2 Fy tanh” — |,
k+1 2

t>m, t=>k.

The latter formulae hold at any £ when o is an half-integer number. When o is an integer
number, these formulae holdatk =0,1,...,0 —1,0. Atk = —0,—0o +1,...,0 we must

replace the function
) T . —0,—k—o 5T
tanh” — | via , F} tanh” —
2 —k+1 2
3

F k—o,—0
2 k+1
and tanh* 5 via tanh
At m = n = 0 we obtain a zonal hyperspherical function 3,(cos89) = 3{,(cos0%) of
the group SOy (1, 4). Namely,
20 ¢

0 T
. 9" — 20 7 r h2U e
34 (cos09) = cos > cos > cos 5

F'oc+k+1) 0 ) T
i t k—t k

E E — t — tan — tanh® —
% F(o—k+l) an2 2an 2

. ,0 F k—o,—t—o
2] k—t+1
tanh2£),
2
20¢

0
3, (cos 89) = cos>® 5 cos 5 cosh?’ %

(o —k+1) 0 ) T

Z Z k ! 1—k k
—_— —t —tanh™" —
x F'o+k+1) an 2 an 2 an 2

29 t—o,—k—o
—tan” — | o F}
2 t—k+1
tanh2£>,
2
t > k.

In its turn, the functions f (¢4, 69) = €%’ 37 (cos 67) (or f(6) = 35 (cos 7)) are defined on
the surface of the dual quaternion sphere S;. Explicit expressions and hypergeometric-type
formulae for f(¢?, 89) are analogous to the previous expressions for f (¢, 89).

k=—0 t=—0

t—o,—0
X2F1
t+1

k—o,—0o
X2F1

k+1

k>t

k=—0t=—0

—0,—t —0O
x2f1 t+1

<—0, —k—o
X2F1

—k+1
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Spherical functions of the fourth type f(¢,0,¢%) = M, (9,0,¢) =
e~imy P? . (cosf) e "V (or f(c, ¢, x) = me (s, 0, x) = e_i’"gP,;’n (cos ¢) e "x) are defined
on the surface of the real 3-sphere S* = SO (4)/SO(3). Let L*(S%) be a Hilbert space of
the functions defined on the sphere S° in the space R*. Since S° ~ S0y(1,4)/P ~ K /M,
then the representations of the principal non-unitary (spherical) series 7, are defined by the
complex number o and an irreducible unitary representation w of the subgroup M = SO(3).
Thus, representations of the group SOy (1, 4), which have a class 1 with respectto K = SO (4),
are realized in the space L?(S?). At this point, spherical functions of the representations Q"
of SO(4) form an orthogonal basis in L?(S?). Therefore, we have here representations of
SOn(1, 4) restricted to the subgroup SO (4):

l

7 S00(1,4

T%so[@(w = Z$Qm'
=0

4.1. Spherical functions on the hyperboloid and their applications to
hydrogen atom problem

In 1935, using a stereographic projection of the momentum space onto a four-dimensional
sphere, Fock showed [12] that Schrédinger equation for hydrogen atom is transformed into an
integral equation for hyperspherical functions defined on the surface of the four-dimensional
sphere. This discovery elucidates an intrinsic nature of an additional degeneration of the
energy levels in hydrogen atom, and also it allows one to write important relations for
wavefunctions (for example, Fock wrote simple expressions for the density matrix of the
system of wavefunctions for energy levels with an arbitrary quantum number n). In 1968,
authors of the work [5] showed that Fock integral equation can be written in the form of a Klein—
Gordon-type equation for spherical functions defined on the surface of the four-dimensional
hyperboloid. ‘Square roots’ of the Klein—-Gordon-type equation are Dirac-like equations (in
the paper [5] these equations are called Majorana-type equations) or more general Gel fand—
Yaglom-type equations [13]. Equations of this type were first considered by Dirac in 1935 [8].
Here there is an analogy with the usual formulation of the Dirac equation for a hydrogen atom
in the Minkowski spacetime, but the main difference lies in the fact that Dirac-like equations
are defined on the four-dimensional hyperboloid'® immersed into a five-dimensional de Sitter
space.

So, spherical functions of the third type f(e,7,6,0) = M7, (€,7,6,0) =
e M P? (cosht)e ™ are defined on the upper sheet H} of the four-dimensional
hyperboloid [x,x] = 1, where P, (cosht) is a Jacobi function'! considered in details
by Vilenkin [31]. The functions 9017, (€, 7, &, w) are eigenfunctions of the Laplace—Beltrami
operator Ay (H}) = —F defined on H}:

[AL (HY) —o(o+3)]M, (e, 7.6, 0) =0,

where
92 d 1 92 92 92
AL(Hf)=———cotht——7 —— —2coshrt + ,
at2 0t sinh®T | 0€? ded(e +w) (e +w)?
or
d2 th d +m2+112—2mr1(:0shr ( +3) o (cosht) = 0
—— —cotht— —o(o cosht) = 0.
dr? dr sinh® 7 m

10 A5 is known, this hyperboloid can be understood as the four-dimensional Minkowski spacetime endowed globally
with a constant negative curvature.

! Representations of the group SU (1, 1) ~ SL(2, R), known also as a three-dimensional Lorentz group, are expressed
via the functions ‘B, (cosh 7).
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After substitution y = cosh 7 this equation can be rewritten as

(y? 1)d2 42 d m2+112—2mr1yJr (0 +3) |27 () =0
—1H)— — 40 (o =0.
g 42 "y =1 )
Let us construct a quasiregular representation of the group SOq(1, 4) on the functions
f(x) from Hf, where x = (€, 7, €, w). Let Lz(Hf) be a Hilbert space of the functions on the
hyperboloid H{ with a scalar product

(f1. f2) Z/H4 J1(x) fa(x) dpe(x)

= / / / / P (cosh T)P2 (cosh ) e~ 2"@*) sinh 7 d7 de de do,
o Jo Jo Jo

where dy(x) is an invariant measure on Hf with respectto SO(1, 4). This measure is defined
by an equality dt(x) = sinh 7 dt de de dw. In accordance with (12) the range of variables €,
7, &, wis (—oo, +00), but we consider here the upper sheet of the hyperboloid; therefore, the
range of these variables is (0, 00). A quasiregular representation T in the space L?(H}) is
defined by the formula

T@)f) = f@ ), x € H.

It is easy to show that this representation is unitary. However, T is reducible, and in
accordance with Gel’fand—Graev theorem [14] is decomposed into a direct integral of
irreducible representations 77 of the principal unitary series (0 = —3/2+ip,0 < p < 00).

Analogously, a quasiregular representation of the group SO¢(1,4) in a Hilbert space
L?(C?$) of the functions on the upper sheet C of the cone C* (C}:  x3—xi—x3—xi—xi =0,
X0 > 0) has the following form:

T(g) f(x) = f(g "), xeCl.

This representation is unitary with respect to a scalar product
(o) = [ T ) duo)
C+

defined on Lz(Ci‘). Here, duu(x) is an invariant measure on Ci with respect to SOy (1, 4).
This representation is reducible. Irreducible unitary representations of the group SO(1, 4)
can be constructed in a Hilbert space of homogeneous functions on the cone [31].

Let us consider applications of the spherical functions f (e, 7, &, ®) to hydrogen and
antihydrogen atom problems (about antihydrogen atom, see [10]). As it has been shown in the
work [5] when the internal motion can be described by algebraic methods, as in the case of
hydrogen atom, the proposed equation for the motion of the system as a whole (motion of the
c.m.) is equivalent to a Majorana-type equation, free from the well-known difficulties such as
a spacelike solution. As is known, the Bethe—Salpeter equation for two spinors of masses 1
and m»,

i
(Pr — m) (P2 — m) Y (p1, p2) = E// G(p1, p2; p1, POV (PL, py)dpidps,

in the ladder approximation can be written as follows:
i

@ PV +pY —m) (2 P? — pP —ma)yp(p) = o

/G(q)wp(p +q)dq,
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where
P = pi+ ps, p =cCp1 — Ci1p2,

¢y =my/(my +my), ¢y = my/(my +ma),

the metric is g,, = +1, —1, —1, —1, and the superscripts on P and p@ refer to the y
matrices. In this case, projection operators can be defined as

AL = [&(p) £ Ki1/2& (), 93)
where

& =[P*m? - p*) +(p- P)*]"",

K= [m PO —iPro®p], K =[m PO +iPre® p']
with

o) =20y "]
Further, using the operators (93), we obtain
(P — K2 — K2)p(p") = —(ADAD — ADA®)p) p@ / G — DS - p)di,

(94)
where p/ = p, — p"u,, is the transverse relative momenta, and p* = p - u,u* = P*/|P|,
() = [TZ ¥, q") dg’. The approximation

D, @
ADAD — ADAD = 4

means that we take only positive-energy states for the constituents. On the other hand, the
choice

ADAD —ADA®D =

would have meant taking only negative-energy states for the system and would correspond to
charge conjugation for the c.m. motion.
Since Al = 1 is equivalent to

172

Ki =& = (mi — (p")?) "|P|,

then equation (94) can be written as
(P2 = Pl +m2 = 01 a0lp(p") = PP [ T = Dpisa - Py,

where
mymy

mi+mj ’
In the case of hydrogen atom this equation has the form

T\2 T 62 1
(1P| — (my +my — (0 /20) ) (p )='P'Z/@r—

_1)28(1 - P)e)dl. (95)

Using the Fock stereographic projection [4, 12]
Sﬂzzapﬂ(az—pz)’ §4:(a2+p2)/(a2_p2)7 /’L:09"'537
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where p* = p, p* and a is an arbitrary constant, we will project stereographically the four-
dimensional p-space on a five-dimensional hyperboloid. This projection allows us to rewrite
equation (95) in the form of a Klein—Gordon-type equation

(P> = KHWp =0 (96)
with
K=mi+m,p— ,ue4/2N,

and N? is the operator D’ + 1, where D7 is the angular part of the four-dimensional Laplace
operator. Wp(&,) form a basis for the representation of the de Sitter group SO((1,4). A
‘square root’ of the Klein—-Gordon-type equation (96) is a Majorana-type equation

[[-P — (m+m)N +e* 1/2N]Wp =0 97)
or
[T-P+(m +m)N —e* u/2Nrp =0 (98)

where I'-matrices behave like components of a 5-vector in SO(1, 4). Equations (97) and
(98) describe hydrogen and antihydrogen atoms, respectively.

In equations (96)—(98), the functions Wp are eigenfunctions of the Laplace—Beltrami
operator defined on the surface of the five-dimensional hyperboloid (more precisely speaking,
on the upper sheet H; of this hyperboloid for equation (97) and on the lower sheet H*
for (98)). As it has been shown previously, this hyperboloid is a homogeneous space of
the de Sitter group SOq(1,4). On the other hand, spherical functions ¥, are solutions of
equations (96)—(98), that is, they are wavefunctions, and for that reason Wp play a crucial role
in the hydrogen (antihydrogen) atom problem.

Let us consider in brief solutions (wavefunctions) of the Majorana-type equations (97)
and (98). To this end in view we must introduce an inhomogeneous de Sitter group
IS0y = SOy(1,4) © Ts, which is a semidirect product of the subgroup SOy (1, 4) (connected
component) of five-dimensional rotations and a subgroup 75 of five-dimensional translations
of the de Sitter space R"*. The subgroup 75 is a direct product of five one-dimensional
translation groups 77, Ts = 71 @ T1 ® T1 ® T1 ® T. At this point, each group 77 is isomorphic
to the group R* of all positively defined real numbers. At the restriction to H{, the maximal
homogeneous space Ms = R x & of ISOy(1,4) is reduced to Mg = RI* x Hf. Let
F(x,e€, 1, e, w) be a square integrable function on Moy, that is,

/ |[FI>dx d*g < +00,
H* JTs

then in the case of finite-dimensional representations of SO¢(1, 4) there is an expansion of
F(x,€, 1, ¢, w) in a Fourier-type integral

F(x,e,1,6 0) = Z Z / elP¥ emmenEr @)y (cosh r) dx, (99)

o=0 m,n=—o
where
D" "o +3
af;m ( ) ( o ) / / —l[)X Zm (COSh 7,') e me— n(e+w) de d4
167'[2 HY JTs

and d*g = sinh 7 dt de de dw is a Haar measure on the hyperboloid H.
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Further, let T be an unbounded region in R!* and let ¥ be a surface of the hyperboloid
Hf (correspondingly, 32, for the sheet H*), then it needs to find a function v (g) = ( 5 (2),

lﬁm;, (g))T in the all region 7. 1(g) is a continuous function (everywhere in 7), including the
surfaces ¥ and ¥. At this point, Vi Qs = Fu(g), 1/'/”‘,;(g)|)»: = F,,(g), where F,,(g) and
F,:(g) are square integrable functions (boundary conditions) defined on the surfaces ¥ and
¥, respectively.

Following the method proposed in [24, 25, 26, 28], we can find solutions of the boundary
value problem in the form of Fourier-type series

P=0 "> fom() Y ol M, (6.7, 6 0), (100)
o=0 k n=—o
P = 3% Fanit S (6,7 6, ), (101)

6=0 | h=—6

where
—1)"Q2o +3
all = ()(—0) F, 7 (€, T, ¢, ) sinh T dr de de dw,
167'[2 Hf
4 —1)"26 +3 *
all, = M Fy . (€, T, &, ) sinh T dt de de dw.
167'[2 H*

The indices k and k numerate equivalent representations. I, (€, 7, €, w) (smgm (e, 1, ¢, a)))

are hyperspherical functions defined on the surface ¥ () of the four-dimensional hyperboloid
H* of the radius r (r*) (H* can be understood as a four-dimensional sphere with an imaginary

radius ), f,,.« () and f,,.;(r*) are radial functions. Taking into account the subgroup 75,
we can rewrite the wavefunctions (100) and (101) in terms of Fourier-type integrals (99) (field
operators).

5. Spherical functions of unitary representations of SO(1,4)

Spherical functions 90, (¢, 09, 49), considered in section 4, define matrix elements
of non-unitary finite-dimensional representations of the group SOy(1,4). Following the
analogue between Spin, (1, 3) >~ SL(2, C) and Spin,(1,4) >~ Sp(1, 1), we can define finite-
dimensional (spinor) representations of SO¢(1,4) in the space of symmetric polynomials

Sym , as follows'?:

(102)

_ +b az+b
qu(Z7Z) — (CZ +d)lo+ll—l(cZ +d)10 11+1q <aZ az ) ,

cz+d’ cz+d

where a, b, c,d e H, k =1lyp+1y —1,r =1y — [, + 1, and the pair (/y, ;) defines an irreducible
representation of SO (1, 4) in the Diximier—Strom basis [9, 22]:

12 As is known, any proper Lorentz transformation g corresponds to a fractional linear transformation of the complex
plane with the matrix (]0/‘ g) € SL(2, C) [15]. Inits turn, any proper de Sitter transformation ¢ can be identified with a

fractional linear transformation w = (az+b)(cz+d)~" of the anti-quaternion plane with the matrix [‘g Z] e Sp(l, 1)

(about quaternion and anti-quaternion planes and their fractional linear transformations, see [21]).
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Ms|j',m', q,q;lo,m, L)) =m'|j',m', q,q;lo,m, 1),
. . . / 1,
Mylj' m' q,q;lo,m, L)y =[( Fm(G £m'+ DI2|j,m' +1,q,q;lo,m, ),

. . . 1,
Psljm' q,q;:lo,m ) = —a(j' +1; ¢, )I(G + 1) —m? 12| + 1, m’, q, q; lo, m, 1)
m/(q+1)q|., " oo 1)
j/(j,+1) J 9 ’q’ q’ 0’ b l
. . 1,
—a(j g, i —m*12|j' — L,m', q, q; o, m, 1),

Pilj' . m', q,q;lo,m,l)
= +a(j+ L g, I £m + DG £m + 213 + 1,m £1,4,q; Lo, m, )
+1
N .(61. )q
J'G+ 1)
Ta(s g LG Fm)G Fm = DI = 1L,m' 1,4, q: 1, m, 1),

[/ Fm)G £ + DI m £1,q. q: 1o m. )

Polj'sm' g, qilo.m, 1) = a(q, q: lo. [DU(q + j' +2)(q — j'+ DI | m',q + 1, q: lo.m. 1)
+a(q —1,g;lo, DI+ j' + V(g — D11 m' g — 1. g3 Lo, m. )
+b(q. q: lo. DI = G +q + DI m' g, q + 15 1o, m, 1)
+5(q.q — L lo. DI + ) (' — g+ DI m' g, q — 15 1o, m, 1),

where Mi = Ml :tiMz, Pi = Pl :biPz and

(R = g+ 1 = DT
CY(] 5 q, C]) - 7 )

Qj +D2j — 1)
(¢ — o+ D +lh+((g+3)°+B)
4Q2q + (g +1) '

alq,q;lo, 1) = [

Uo—)lo+q+D((g+1)+R) ]
42g +1)(g +1) ’

b(g.q;lo, 1) = [

The relations between the numbers [y, /| and o, & are given by the following formulae:
(10711)=(U’G+1)1 (10111)2(_drd+1)7

whence it immediately follows that

lo+1 —1 lo—11+1
g lorh=1 o =Ll (103)
2 2
In the case of principal series representations of S O¢(1, 4) we have'? [} = —%+ip, p €R.

Using formulae (79), (80) and (103), we find that matrix elements of the principal series

13 This relation is a particular case of the most general formula /; = 7%(11 — 1) +ip for the principal series
representations of SO (1, n) [6].
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representations of the group SOy (1, 4) have the form

3,
—3+ip.lo

Mun (q) = exp(—m(e +ip +kg) —n(e +w +iyy —jx))
ZU l()
X Z Z "2 /Ty —m+ DT Ug+m+ DTy —t + DT(lp+1 + 1)

k:—l() l‘=—l()

6 6
x cos?ho 3 tan” ' —

min(ly—m,ly+t)

i/ tan?/ ¢
X . . 2 . .
Z rg+nprdg—m—j+0Hlr{lo+t—j+DI'm—t+j+1)

Jj=max(0,r—m)

x/T(lg—k+ DT (lg+k + )T (lg — t + DT (lp + 1 + 1) cos0 %tank_’ %
min(ly—k,lp+t) i25 tanlv‘l%
x Z F(s+D)Ug—k—s+DlUo+f—s+DI(k—t+s+1)

s=max (0,7 —k)

x /D (=4 +ip = n)T (=4 +ip+n)T (=} +ip — K)D(~ L +ip +4)
x cosh =32 L ganhn=+ ©
2 2
> h2r
x Z 1 . o 1 = . .
p=max(0,k—n) T(p+ DI (=5 +ip—n—p)T (=5 +ip+k—p)T(n —k+p+1)
(104)

From the latter expression it follows that spherical function f(q) of the principal series can be
defined by means of the function

Sm;lé“/%lo (q) = o (eHioHke) Sn_n%HNU (cos 09) e~ ME+wHY—in).
where
I I

—3+n.l N b lo —3+ip

Bmn (cosf?) = Z Z P, (cosO) P (cos p)B,,> " (cosht).
k=—lp t=—1y
. . —3+ip. . .
Let us now express the spherical function ‘Jﬁmﬁﬂp ‘(q) of the principal series

representations of SO¢(1,4) via multiple hypergeometric series. Using formulae (104) and
(81)—(82), we find

3

Myun " (@) = exp(—m(e +ig +ke) — n(e +w+iY — jx))
1 .
» Clo+m+ DF(_EI"' lfo —n) cos2lo 4 cog2lo ¢ cosh—3+20 &
Tl —m+ DI (=3 +ip+n) 2 2 2
lo lo 1,
I'llg—k+DI'(—5 +ip+k 0
X Z Z ik (o T 12 - p+H) tan” " — tan' ?tanhk_” T
P T(lo+k+ DI (=3 +ip — k) 2 2 2
m—ly, —t — 1 2] t—1lo, —k —1
X 2 Fy 0 0 —tan® — 2 F 0 0 —tan? ?
m—t+1 2 t—k+1 2

k+%—ip,—n+%—ip
Xl k—n+1

tanh® E) ,
2

mz=t, t=k, k=n; (105)
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34
Mynn " (@) = exp(—m(e +ig +ke) —n(e +w+iy —jx))
1 .
8 C{y+m+ 1)F(—51+lfo - n) cos2h Qcoszl“ f cosh-3+2ir 2
L —mo+DI(=1 +ip+n) 2 2 2
lo lo 1 .
T(lo—k+ DT (=5 +ip +k) 0 ¢ T
em+k—2, 2 m— k— k—n
X Z Zl R T +k+1)1"(—l+i _k)tan tztan " Z tanh* ™" —
o — 0 2 tIp
m—ly, —t — [, k—1y,—t —1
X o F) 0 0 —tan2€ » F 0 0 —I:a,nza—5
m—t+1 2 k—t+1 2
k+32 —ip,—n+32—i
X o Fy 27 271 tanhzz ,
k—n+1 2
m>=t, k>t, k=>=n; (106)
34
Mynn " (@) = exp(—m(e +ig +ke) —n(e +w+iY — jx))
Tdo—m+ DI (=L +ip+n .
X (o ) ( 12 .p )cos%—cos%?cosh%”‘pz
L(lo+m+ DI (—3+ip —n) 2
/! /! 1 .
x 20: 20: i Lo +k+ DT (=5 +i0 — k) tant_’”gtank_’ (z)tanh"_kz
1,
k=—Ilo t=—1 F(ZO —k+ 1)F(—§ +1p +k) 2 2 2
t—lo,—m — 1 il k—1y, —t —1
X o Fy 0 0 —tanz— 2 Fy 0 0 —tanzf
t—m+1 2 k—rt+1 2
3 . 3 .
n+s—ip,—k+35—
X2 F 2P 27 a2 £ ,
n—k+1 2
t>m, k>=t, n=k; (107)
34
Myun ™" (@) = exp(—m(e +ig +ke) —n(e +w+iY —jx))
1 .
X Plo —m+ I)F(_F +.l'0 * n) cos?h Q cos?o ? cosh—3+2P T
T(lo+m+ 1) (=5 +ip —n) 2 2
Ih I 1, :
F'lp+k+DHI'(—5 +ip — k 0
x Z Z i21—m—k\/ (0 ) ( 2l :0 )tant—m_tanl—k q—stanh" kz
Pyt Ty —k+ DT (=5 +ip +k) 2 2 2
t—ly,—m —1 ] t—1lo, —k —1
X o Fy 0 | —tan? 2 2 B 0 0 —tanzf
t—m+1 2 t—k+1 2
3 . 3 .
n+3—ip,—k+35—1
X 2 Fy 2710 2~ 1# anh2£ ,
n—k+1 2
t>m, t=>k, n=k; (108)
—%+ip,lo
My (q)

=exp(—m(e +ip +kg) —n(e + o +iy — jx))

\/F(lo —m+ DI (=L +ip —n)
X

TCo+m+1DI(—=3 +ip+n)

0
cos?0 = cos

2

2l d)
2

3420 T
~ cosh 3+2ip

2
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5 ZZU Z . F(10+k+1)r(—§+ ip +k) )

T
=™ _ tan 5 tanh* =" —

tan

1
k=—ly t=—ly F(l()—k+1)F _§+ ) ’
¢t —l ,—m _l l . —1 —
X2 F) ‘ ’ —tan’ > i —tan2 ?
t—m+1 k—t+1 2
k+3—ip, —n+3—i
X o F) p P tanh® — |,
k—n+1 2
t=m, k>t, k=n; (109)
Myt ™" (@) = exp(—mie +ip +ke) — ne +w+iy — )
1 .
X Lo m+ l)r(_? ’ f,O — n) cos?lo QCOSZI0 ¢ cosh—3+2» T
To+m+DI(=L +ip +n) 2 2 2

) i ii”—"’"‘\/ Py +k+ DU(=5+ip+k) 0 z—kg

k=—Ily t=—1Iy Lo —k+ I)F(—% +ip — k) 2

t —ly,—m — 1 0 t—1y, —k —1
X 2 Fy 0 | —tan? = 2 Fy 0 0
2 t—k+1

t—m+1
tanh2£>,
2

k+2—ip, —n+3—i
XZFI( S—ip 3—ip

k—n+1
t>m, t=>k, k=>n; (110)
Myt () = exp(—m(e +ip +Ke) — n(e +w +iy — jx))

T cos2 2 cost £ cosh3+2p T
T(lg—m+ DI (=1 +ip —n) 2 2 2

X\/F(lo+m+1)F(—%+ip+n) o ®

ly Iy

Ty —k+ DI (=1 +ip —k 0
X Z Zi’"’k (o T 2 _'O )tan’"’t—tan”k?tanh"’kz
P R— Il +k+ W(-z +ip +k) 2 2 2

m —ly, —t — Iy t—1ly, —k —
X o F —tan® —
t—k+1

m—t+1
3. 3
n+35—ip,—k+3—1i T
X2Fl< 2P 2w tanh® E),

n—k+1
m>t, t>k, n>k; (1)
i (@) = exp(—m(e +ip +ke) — n(e + o +iv — jx))
] .
y 'y +m+ 1)F( ? +1p + ”) cos2o gcosy" f cosh—3+2ir v
F(lo—m+1)r( 3 +ip —n) 2

I —
X XO: Z gz [Tlo = k+ DT(=5 +ip — k) tan” Y — tan*~ ¢tanh" I
Jo—r—_ Lo +k+ DI (=1 +ip+k) 2 2 2
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m—ly, —t —1 0 k—1ly, —t —1
X 2 F} 0 0 —tanz—  F 0 0 —tanzf
m—t+1 2 k—t+1 2
3 s 3 s
n+35—ip,—k+3—1i
X 2 Fy 2 P 2 ptanhzz,
n—k+1 2
m>t, k>t, n=>k. (112)

Spherical functions of the second type f(¢?, 69) = 9" (¢?, 04, 0) of the principal

3+ip,lo
series are defined as

M, @1 07.0) =73, L (cos ),
where
ly lo
" _ I! If k
3f%+ip,lo (cos87) = kZI rzz P, (cos0) P (cos qﬁ)‘ﬁ_%m (coshT).
=—lp ==l

Hypergeometric-type formulae for the functions f (¢?, 67) follow directly from (105) to (112)
atn = 0. .

Spherical functions of the third type f (e, 7, &, w) = ;,3 e (€, 7, &, w) for the principal
series representations have the form

—34i _ -3+ _
Ml (€, T, & w) = e Bonr ?(cosh7) e "+,

The hypergeometric-type formulae are

. N\ (s 1
f%+ip(€ T, 6, w) = e MenER) (ip+m—3)C(ip —n—3) cosh—3+20 &
mn » Ly © - . 1 N 1
Lip—m— )l ip+n—3)
. 1 . 1
T m—ip—5,—n—ip—3 T
x tanh” ™" =, F} 2 2 |tanh? = |, m > n,;
2 m—n+1 2

. s 1
34 o F'p+n—35)Cip—m—3) i T
m’% lp(e’ T, ¢, w) — e M€ n(e+w) 2 2 cosh 3+2ip

T(ip—n—3)C(ip+m—1) 2
. 1 . 1
T n—ip—5,—m—1ip — 5 T
x tanh" ™" — L F; P2 P~ tanh® = |, n>=m.
n—m+1 2

R

In like manner we can define conjugated spherical functions f(q) = 9, lp’lo(q),

f(@?,6%) = i)ﬁ'f%_ip’lo (¢9,69,0)and f (e, 7,6, 0) =M, 2 " (€, T, &, w), since a conjugated
representation of SO (1, 4) is defined by the pair £(/y, —I;).
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